User manual

(Media Server)

HAPPYTIME SOFTWARE CO., LIMITED

Declaration

All rights reserved. No part of this publication may be excerpted,
reproduced, translated, annotated or edited, in any form or by any

means, without the prior written permission of the copyright owner.

Since the product version upgrade or other reasons, this manual will
subsequently be updated. Unless otherwise agreed, this manual only as a
guide, this manual all statements, information, recommendations do not

constitute any express or implied warranties.

www.happytimesoft.com

http://www.xinwei.com.cn/

Table of Contents

Chapter 1 Introduction

Chapter 2 Key features

Chapter 3 Function chart

Chapter 4 Configuration

4.1 Configuration Templates.........ccceeevvrerirervierirerieesieesreesree e
4.2 Configuring Node Description.........ccceeeueveereeneeniieneenieenieeneenns

4.2.1 SYStem PArameterscccoeuueeeveeeeieeenieeeieeseesreanaeenns
422HTTP ROAeooooooeoiiiieeeeceeeeeeeeeeeeee
423 HTTPS NOAe ...
424 RTSP HOAE ..o
425 RTMP nOde..........cc.ooeeeeeeeceeeeceeeeeeeeeee e
426 SRTHOAE ..o
4.2.7 HTTP-FLV ROde...........cooeeoeceeeeeceeeeeieeeeeieeeeeeeeen
428 HLSROAE. ..ot
429 USCr ROAEooooceeeeeceeeeeeeeeeeeeeeiee e
4.2.10 Application NOAec.ccceveeeveceaiieiieieeeieeeenes
4.2.11 Backchannel node....................ccccccouiiiimeviiiiiiiiiiieiinnnn..

Chapter 5 Data pusher

Chapter 6 RTSP over HTTP

Chapter 7 RTSP over Websocket

Chapter 8 RTP Multicast

Chapter 9 Audio back channel

9. 1 RTSP ReQUITE- TG .. .eeeieuieiiieitieittestteieete ettt ettt sttt sttt et e e eneeens

9. 2 Connection setup for a bi- directional CONNECHION........c..ccveevieiieiirieriereereeseesieesieeeees

9. B EXAMPIE ..ottt ettt e ettt ettt te e beete e teenteenteenteenaennae e

Chapter
Chapter
Chapter
Chapter
Chapter

10 Run media server

11 Multiple capture devices support

12 Capture application window

13 Support URL parameters

14 Support SRTP

14.1 SRTP fOr rtSp PUBLISHINGeovieiiieiieiieiiicieee ettt seaeneeas
14.2 SRTP {Or 1tSP PlayDaCKeceviieiiieiiieieeeit ettt sttt e e see e esaeenne s

Chapter 1 Introduction

Happytime Media Server is a simple, lightweight, high-performance, and stable
stream server, it outputs rtsp, rtmp, srt(Secure Reliable Transport), http—flv, hls
streams.

It can stream audio and video files in various formats

It can also stream video from camera , living screen and appliction windows,
stream audio from audio device.

It can stream H265, H264, MP4, MJPEG video stream and G711, G722, G726, AAC,
OPUS audio stream.

These Streams can be received/played by standards—compliant
RTMP/RTSP/RTP/http—f1v/HLS media clients

It supports rtsp/rtmp/srt proxy function.

It supports rtsp audio back channel function.

It supports rtsp over http function.

It supports rtsp over https function.

It supports rtp multicast function.

Support for data pusher function.

It developed based on C/C++, the code is stable and reliable, cross—platform
porting is simple and convenient, and the code is clear and concise. The server is
written to be lightweight and easy to understand, while having good performance,
very low latency, video opened immediately.

Enjoying multimedia content from your computer can be a pleasant way for you
to spend your free time. However, sometimes you might need to access it from various
locations, such as a different computer or a handheld device, Happytime Media Server,

that can help you achieve quick and efficient results

Chapter 2 Key features

The server can transmit multiple streams concurrently
It can stream audio and video files in various formats
It can stream audio from audio device

It supports recording system sound on Windows

It can stream video from camera and living screen

It can stream video from camera and application windows
It can stream H265, H264, MP4, MJPEG video stream

It can stream G711, G722, G726, AAC, OPUS audio stream
It outputs rtsp, rtmp, srt, http—flv, hls streams

It supports rtsp over http function

It supports rtsp over https function

It supports rtsp over websocket function

It supports rtp multicast function

It supports data pusher function

It supports RTSP/RMTP/SRT proxy function, as the following:

RTSP server — Media client
RTMP server — Happytime media server

— Media client
SRT server
HTTP MJPEG — Media client

Support RTSP audio backchannel

Happytime media server comply with ONVIF backchannel specification, the url is

https://www.onvif.org/specs/stream/ONVIF-Streaming-Spec-v1706.pdf

https://www.onvif.org/specs/stream/ONVIF-Streaming-Spec-v1706.pdf

2]

T 3

i

RTSP Server

RTMP Server

SRT Server

HTTP MJPEG Server

Video/Audio Device

Living screen

Local media files

APP windows

A

AN

Chapter 3 Function chart

v

RTSP
Pusher

Pusher

RTSP SRT SRT
Pusher Pusher

Media

RT!

Proxy

P/TCR/UDP

-

Media Server

RTSP/RTMP/SRT/HTTP-FLV/HLS

Multicast

Audic
backchannel

Replay

\

(

RTMP
Pusher

—
163

Media Client

Media Client

Media Client

Chapter 4 Configuration

If no configuration file is specified at startup, the default configuration file

mediaserver. cfg will be used.

4.1 Configuration Templates
<?xml version="1.0" encoding="utf-8"?>
{config>
{ipv6 enable>1</ipv6 enable>
<loop nums>—-1</loop nums>
<log enable>1</log enable>
<log level>1</log level>

<httpy
<{enable>1</enable>
{serverip><{/serverip>

{serverport»>80</serverport>

</http>

<https>
<enable>1</enable>
{serverip><{/serverip>
{serverport>1443</serverport>
{cert file>ssl.ca</cert file>
<key file>ssl.key</key file>
<{/https>

{rtsp>
<enable>1<{/enable>
{serverip><{/serverip>
{serverport>554</serverport>
<multicast>0</multicast>
<udp base port>22000</udp base port>

<{metadata>1<{/metadata>

{rtsp_over http>1</rtsp over http>
{rtsp_over https>1<{/rtsp over https>
<need auth>0<{/need auth>
<http notify>
<on_connect></on _connect>
<on_play></on play>
<on_publish></on publish>
<on_done></on_done>
<notify method></notify method>
</http _notify>

{/rtsp>

{rtmp>

<enable>1</enable>

{serverip></serverip>

{serverport>1935</serverport>

<http notify>
<{on_connect></on_connect>
<on_play><{/on play>
<on_publish></on_publish>
<on_done></on_done>
<notify method><{/notify method>

<{/http notify>

</rtmp>

<{srt>

<enable>1</enable>

{serverip><{/serverip>

{serverport>8080</serverport>

<http notify>
<on_connect></on_connect>
<on_play></on_play>
<on_publish></on_publish>

<on_done></on_done>

<notify method></notify method>
<{/http_notify>

<{/srtd>

<http—flv>

<enable>1</enable>

{chunked>1</chunked>

<http notify>
<on_connect></on_connect>
<on_play></on_play>
<on_done></on_done>
<notify method></notify method>

</http notify>

</http—flv>

<hls>
<enable>1</enable>
{fragment>5</fragment>
<{playlist>5</playlist>
<{cleanupdir>1</cleanupdir>
</hls>

{user>
{username>admin</username>
{password>admin</password>

<{/user>

{application>

<name>myapp</name>

<output>
<url></url>
{video>
{codec>H264</codec>

<width></width>
<height></height>
{framerate></framerate>
<bitrate></bitrate>
{/video>
{audio>
{codec>AAC</codec>
{samplerate>44100</samplerate>
{channels>2</channels>
<bitrate></bitrate>
{/audio>

<{/output>

<{proxy>
{suffixoproxy</suffix>
url></url>
{user></user>
{pass></pass>
{transfer>TCP</transfer>
<ondemand>0</ondemand>
<output>
{video>
{codec></codec>
<width></width>
<height></height>
{framerate></framerate>
<bitrate></bitrate>
{/video>
<audio>
<{codec>AAC</codec>
{samplerate>44100</samplerate>
{channels>2</channels>
<bitrate><{/bitrate>

<{/audio>

{/output>

{/proxy>

{/application>
<{/config>

4.2 Configuring Node Description

4.2.1 System parameters

<{ipv6_enable>

Indicates whether IPv6 is enabled, O-disable, l-enable

Note: If the server does not specify a server ip in <serverip> and the
{ipv6_enable> is 1, and the server has an IPv6 address, the client can connect to

the server through the IPv6 address

<loop_nums>
When streaming local media files, specify the number of loop playback, —1 means

infinite loop.

<log _enable>

Whether enable the log function, O—disable, 1-enable

{log _level>
The log level:

TRACE 0
DEBUG 1
INFO 2
WARN 3
ERROR 4
FATAL 5
4.2.2 HTTP node
<enable>

Whether to enable HTTP server, O-disable, 1l-enable.

{serverip>
Specify the IP address of http server, if not specified, it will listen on all

interfaces.

{serverport>
Specify the port of http server, the default is 80.
Note: On Linux systems, ports below 1024 are reserved by the system and require

root privileges to be used

4.2.3 HTTPS node
<{enable>
Whether to enable HTTPS server, O-disable, 1l-enable

{serverip>
Specify the IP address of https server, if not specified, it will listen on all

interfaces.

{serverport>
Specify the port of https server, the default is 443
Note: On Linux systems, ports below 1024 are reserved by the system and require

root privileges to be used

{cert_file>

Specify the HTTPS server certificate file.

<key file>

Specify the HTTPS server key file

Note: The certificate file ssl. ca and key file ssl. key provided by default are
self signed local hosts certificates, only for testing purposes (browsers may pop
up untrusted certificate warnings), and cannot be used in formal deployment

environments.

4.2.4 RTSP node
<{enable>

Whether to enable rtsp server, O—disable, 1-enable

{serverip>
Specify the IP address of RTSP server, if not specified, it will listen on all

interfaces.

{serverport>
Specify the port of RTSP server, the default is 554.
Note: On Linux systems, ports below 1024 are reserved by the system and require

root privileges to be used

<multicast>

Whether to enable rtp multicast function, O-disable, 1-enable

<udp_base_port>

UDP media transmission base port, RTSP over UDP mode assign UDP port on this
base port.

Fach rtsp session needs to assign 8 UDP ports, video RTP/RTCP port, audio

RTP/RTCP port, METADATA stream RTP/RTCP port and audio back—channel RTP/RTCP port.

<{metadata>

Whether to enable the meta data stream, O-disable, l-enable

{rtsp_over_http>
Whether to enable rtsp over http function, 0O-disable, 1-enable

Need to enable HTTP service, http port is HTTP service port.
{rtsp_over https>
Whether to enable rtsp over https function, 0O-disable, 1-enable.

Need to enable HTTPS service, https port is HTTPS service port.

<need_auth>

Whether enable the user authentication function, O-disable, 1-enable

<http_notify>
<{on_connect> :

Sets HTTP connection callback. When clients issues connect command an
HTTP request is issued and command processing is suspended until it returns
result code. If HTTP 200 code is returned then RTSP session continues

HTTP request receives a number of arguments. POST method is used with
application/x—www—form-urlencoded MIME type. The following arguments are
passed to caller:

protocol=rtsp

call=connect

addr — client IP address

app — application name

url - URL requested by the client

name - stream name
clientid - rtsp session id
<on_play> :

Sets HTTP play callback. Each time a clients issues play command an HTTP
request is issued and command processing is suspended until it returns
result code. If HTTP 200 code is returned then RTSP session continues

HTTP request receives a number of arguments. POST method is used with
application/x—www—form—urlencoded MIME type. The following arguments are
passed to caller:

protocol=rtsp

call=play

addr — client IP address

app — application name

url — URL requested by the client

name - stream name
clientid - rtsp session id
<on_publish> :

The same as on play above with the only difference that this node sets

callback on publish command. Instead of remote pull push is performed in
this case.
<on_done> :

Sets play/publish terminate callback. All the above applies here
However HTTP status code is not checked for this callback.
<notify method>

Sets HTTP method for notifications. Default is POST
with application/x—www—form-urlencoded content type

Support GET and POST method.

4.2.5 RTMP node
<{enable>

Whether to enable rtmp server, O—disable, 1-enable.

{serverip>
Specify the IP address of RTMP server, if not specified, it will listen on all

interfaces.

{serverport>
Specify the port of RTMP server binding, the default is 1935
Note: On Linux systems, ports below 1024 are reserved by the system and require

root privileges to be used

<http_notify>
<{on_connect> :

Sets HTTP connection callback. When clients issues connect command an
HTTP request is issued and command processing is suspended until it returns
result code. If HTTP 200 code is returned then RTMP session continues

HTTP request receives a number of arguments. POST method is used with
application/x—www—form—urlencoded MIME type. The following arguments are
passed to caller:

protocol=rtmp

call=connect

addr - client IP address

app — application name

tcurl - tcUrl

name - stream name
clientid - rtmp session id
<on_play> :

Sets HTTP play callback. Each time a clients issues play command an HTTP
request is issued and command processing is suspended until it returns
result code. If HTTP 200 code is returned then RTMP session continues

HTTP request receives a number of arguments. POST method is used with
application/x—www—form-urlencoded MIME type. The following arguments are
passed to caller:

protocol=rtmp

call=play

addr — client IP address

app — application name

tcurl - tcUrl

name - stream name
clientid - rtmp session id
<on_publish> :

The same as on play above with the only difference that this node sets
callback on publish command. Instead of remote pull push is performed in
this case.
<on_done> :

Sets play/publish terminate callback. All the above applies here
However HTTP status code is not checked for this callback.
<notify method>

Sets HITP method for notifications. Default is POST
with application/x—www—form-urlencoded content type

Support GET and POST method.

4.2.6 SRT node
<{enable>

Whether to enable srt server, O—disable, 1-enable.

{serverip>

Specify the IP address of SRT server, if not specified, it will listen on all

interfaces.

{serverport>
Specify the port of SRT server, the default is 8080.
Note: On Linux systems, ports below 1024 are reserved by the system and require

root privileges to be used

<http_notify>
<{on_connect> :

Sets HTTP connection callback. When clients issues connect command an
HTTP request is issued and command processing is suspended until it returns
result code. If HTTP 200 code is returned then SRT session continues

HTTP request receives a number of arguments. POST method is used with
application/x—www—form—urlencoded MIME type. The following arguments are
passed to caller:

protocol=srt

call=connect

addr — client IP address

app — application name

sid - stream id

name - stream name

clientid - srt session id
<on_play> :

Sets HTTP play callback. Each time a clients issues play command an HTTP
request is issued and command processing is suspended until it returns
result code. If HTTP 200 code is returned then SRT session continues

HTTP request receives a number of arguments. POST method is used with
application/x—www—form-urlencoded MIME type. The following arguments are
passed to caller:

protocol=srt

call=play

addr — client IP address

app — application name

sid - stream id

name - sStream name

clientid - srt session id
<on_publishd> :

The same as on_play above with the only difference that this node sets
callback on publish command. Instead of remote pull push is performed in
this case.
<on_done> :

Sets play/publish terminate callback. All the above applies here
However HTTP status code is not checked for this callback.
<notify_method>

Sets HITP method for notifications. Default is POST
with application/x—www-form—urlencoded content type.

Support GET and POST method.

4.2.7 HTTP-FLV node
<{enable>
Whether to enable http—flv server, O—disable, 1-enable

Need to enable HTTP service

<{chunked>

http tunked transfer encoding, l-on, 0-off.

<http_notify>
<{on_connect> :

Sets HTTP connection callback. When clients issues connect command an
HTTP request is issued and command processing is suspended until it returns
result code. If HTTP 200 code is returned then HTTP-FLV session continues

HTTP request receives a number of arguments. POST method is used with
application/x—www—form—urlencoded MIME type. The following arguments are
passed to caller:

protocol=httpflv

call=connect

addr — client IP address

app — application name

name - sStream name

clientid - httpflv session id
<on_play> :

Sets HTTP play callback. Each time a clients issues play command an HTTP
request is issued and command processing is suspended until it returns
result code. If HTTP 200 code is returned then HTTP-FLV session continues

HTTP request receives a number of arguments. POST method is used with
application/x—www—form—urlencoded MIME type. The following arguments are
passed to caller:

protocol=httpfly

call=play

addr - client IP address

app — application name

name - stream name

clientid - httpflv session id
<on_done> :

Sets play terminate callback. All the above applies here. However HTTP
status code is not checked for this callback.
<{notify_method>

Sets HITP method for notifications. Default is POST
with application/x—www—form-urlencoded content type.

Support GET and POST method.

4.2.8 HLS node

as:

{enable>

Whether to enable hls server, O-disable, l-enable.

Need to enable HTTP service.

Note: HLS only supports live streaming, not on—demand streaming
The form of the HLS stream address is as follows:
http://ip:port/myapp/live. m3u8

ip:port is the ip and port of the HTTP service.

myapp is the <name> tag under the <application> tag

live is rtsp / rtmp / srt push stream or rtsp / rtmp / srt proxy stream, such

rtsp://ip:port/myapp/live

rtmp://ip:port/myapp/live

rtsp://ip:port/myapp/proxy

{fragment>

Specify the fragmentation duration, in second.

<{playlist>
Specify the maximum number of ts files in the m3u8 file, the default is 5, the

minimum is 3.

<{cleanupdir>

Cleanup ts file directory at startup.

4.2.9 User node

<user> : Specify the login username password, it can configure multiple nodes
{username>
The login username.
<{password>

The login password

4.2.10 Application node

{application> : it can configure multiple nodes

<name>: Application Name

The rtsp stream address is :
rtsp://Lserverip]: [serverport]/[application—name]/FILENAME
The rtmp stream address is :
rtmp://[serverip]: [serverport]/[application—name]/FILENAME
The srt stream address is :
srt://[serverip]: [serverport]?streamid=[application—name]/FILENAME
The http—flv stream address is :
http://[serverip]: [serverport]/[application—name]/FILENAME

The [application—name] is <name> tag value.

4.2.10.1 Output node
{output> : Specify the audio and video output parameters, it can configure
multiple nodes
<url>
Match URL address, it can be filename, or file extension name. Such as:
screenlive : match live screen stream
videodevice : match camera video stream
*.mp4 : match all mp4 media file
sample. flv : match sample. flv file
If not config this node, it will match all url as the audio/video default
output parameters.
The match order from top to bottom, therefore the default output

configuration should be placed in the last.

{video> : Specify the video output parameters
<codec>

Specify the video stream codec, it can specify the following value:
H264 : output H264 video stream

H265 : output H265 video stream

MP4: output MP4 video stream

JPEG: output MJPEG video stream

Note : RTMP, HTTP-FLV services only support video codec H264, H265.

<width>

Specify the output video width, If O use the original video width
(live screen stream use the screen width, camera stream use the default
width)
<height>

Specify the output video height, If 0 use the original video height
(live screen stream use the screen height, camera stream use the default
height)
{framerate>

Specify the output video framerate, If 0 use the original video

framerate (live screen use the default value 15, camera stream use the

default value 25)
<bitrate>

Specify the output video bit rate, if 0, automatically calculate
the output bit rate, the unit is kb/s

Note: This parameter is valid only if encoding is required (eg

screenlive, videodevice) or if transcoding is required.

{audio> : Specify the audio output parameters
{codec>
Specify the audio stream codec, it can specify the following value:
G711A: output G711 a—law audio stream
G711U: output G711 mu-law audio stream
G722: output G726 audio stream
G726: output G726 audio stream
AAC: output AAC audio stream
OPUS: output OPUS audio stream
Note : RTMP, HTTP-FLV services only support audio codec AAC, G711A,
G711U.

<{samplerate>

Specify the audio sample rate, it can specify the following values:

8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000

If 0 use the original audio sample rate (audio device stream use
the default value 8000)
{channels>

Specify the audio channel number, 1 is mono, 2 is stereo

If 0 use the original audio channel number (audio device stream use
the default value 2)

Note : G726 only support mono.
<bitrate>

Specify the output video bit rate, if 0, automatically calculate
the output bit rate, the unit is kb/s

Note: This parameter is valid only if encoding is required (eg

screenlive, videodevice) or if transcoding is required.

4.2.10.2 Proxy node

<{proxy> : Specify the proxy parameters, it can configure multiple nodes
<suffix>
Specify the stream suffix, you can play the proxy stream from:
rtsp://[serverip]: [serverport]/[application—name]/[suffix]
rtmp://[serverip]: [serverport]/[application—name]/[suffix]
srt://[serverip]: [serverport]?streamid=[application—name]/[suffix]
http://[serverip]: [serverport]/[application—name]/[suffix]

http://[serverip]: [serverport]/[application—name]/[suffix].m3u8

<url>

The original rtsp/rtmp/srt stream address or http mjpeg stream address

{user> <pass>
Specify the original rtsp/rtmp/srt stream or http mjpeg stream address login

user and password information.

{transfer>

Specify the rtsp client transfer protocol:
TCP: rtsp client uses RTP over TCP

UDP: rtsp client uses RTP over UDP

MULTICAST: rtsp client uses multicast

<{ondemand>

Connect on demand, 1-Connect when needed, 0-Always keep connected.

{output>

Specify the stream output parameter. If the parameter does not appear,
use the parameters of the original RTSP/RTMP/SRT/HTTP MJPEG stream. If it
appears and the configured parameters are inconsistent with the parameters
of the original RTSP/RTMP/SRT/HTTP MJPEG stream, then the transcode output
is performed.

The child nodes under this node are consistent with the meaning of the

<output> node

4.2.10.3 Pusher node

<{pusher> : Specify the data pusher parameters, it can configure multiple nodes
<suffix>
Specify the stream suffix, you can play the pusher stream from:
rtsp://[serverip]: [serverport]/[application—name]/[suffix]
rtmp://[serverip]: [serverport]/[application—name]/[suffix]
srt://[serverip]: [serverport]?streamid=[application—name]/[suffix]
http://[serverip]: [serverport]/[application—name]/[suffix]

http://[serverip]: [serverport]/[application—name]/[suffix].m3u8

<{video> : Specify the the input video data parameters
{codec>
Specify the video codec, it can specify the following value:
H264 : H264 video stream
H265 : H265 video stream
JPEG: MJPEG video stream

<audio> : Specify the input audio data parameters
{codec>
Specify the audio codec, it can specify the following value:
G711A: G711 a-law audio stream
G7110: G711 mu-law audio stream
G722: G726 audio stream
G726: G726 audio stream
OPUS: OPUS audio stream
<{samplerate>
Specify the audio sample rate, it can specify the following values:
8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000
{channels>
Specify the audio channel number, 1 is mono, 2 is stereo

Note : G726 only support mono.

{transfer>: Specify the data transfer parameters

<mode>: Specify the data transer protocol, it can specify the following

value:
TCP: use TCP connection to transfer the data
UDP: use UDP connection to transfer the data
RTSP: use RTSP connection to transfer the data, it support FFMPEG rtsp

pusher.

{ip>: Specified data receiving IP address, if there is no configuration,
the default IP address is used
{vport>: Specify the video data receiving port

{aport>: Specify the audio data receiving port

{output>

Specify the stream output parameter. If the parameter does not appear,
use the parameters of the original pusher stream. If it appears and the
configured parameters are inconsistent with the parameters of the original
pusher stream, then the transcode output is performed.

The child nodes under this node are consistent with the meaning of the

{output> node

4.2.11 Backchannel node
<{backchannel> : Specify the audio back channel parameters
{codec>
Specify the audio back channel stream codec, it can specify the
following value:
G711A: G711 a—law audio stream
G711U: G711 mu—law audio stream
G722: G726 audio stream
G726: G726 audio stream
OPUS: OPUS audio stream
{samplerate>
Specify the audio back channel sample rate, it can specify the following
values:
8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000
If 0 use the default value 8000

<{channels>
Specify the audio channel number, 1 is mono, 2 is stereo
If 0 use the default value 1

Note : G726 only support mono.

Chapter 5 Data pusher

Data pusher means that media server receives external data sources and then sends
them out as RTSP/RTMP/SRT/HTTP-FLV/HLS streams.
The data pusher support RTSP/RTMP/SRT mode.

If it is RTSP mode, it supports standard RTSP push stream, such as FFMPEG rtsp

pusher.

FFMPEG rtsp over UDP:
ffmpeg —re —1 test.mp4d —vcodec 11bx264 —acodec copy —preset ultrafast —f rtsp

rtsp://Iserverip]: [serverport], Tapplication—name] 7Zive

FFMPEG rtsp over TCP:
ffmpeg —re —1 test. mp4d —vcodec 11bx264 —acodec copy —preset ultrafast —f rtsp

-rtsp transport tcp rtsp.//[serveripl:[serverport], Tapplication—name], 7ive

If it is RTMP mode, it supports standard RTMP push stream, such as FFMPEG rtmp
pusher.
ffmpeg —re -1 test.mp4d -vcodec [ibx264 -acodec aac - @ flv

rtmp://Iserveripl : [serverport] [application—name] /7ive

If it is SRT mode, it supports standard SRT push stream, such as FFMPEG srt
pusher.

You can push camera live stream by FFMPEG. Please download ffmpeg sourcecode
from https://github. com/FFmpeg/FFmpeg, then compile FFMPEG with ——enable-libsrt

use ffmpeg to push file stream with SRT:

ffmpeg -re —i test.mp4 -vcodec [ibx264 -acodec aac -g 30 —pkt size 1316
—flush packets 0 - mpegts
“srt://[serverip]: [serverport]?streamid=/application—-name]/1ive, m=publish”

play the SRT stream with ffplay:

ffplay —fflags nobuffer -7

“srt://[serverip]: [serverport]?streamid=/application-name]/1ive”

https://github.com/FFmpeg/FFmpeg

The corresponding stream address is:

Rtsp stream : rtsp://[serverip]:[serverport]/[application—name]/live

Rtmp stream : rtmp://[serverip]: [serverport]/[application—name]/live

SRT stream : srt://[serverip]:[serverport]?streamid=[application—name]/live
HTTP-FLV stream: http://[serveripl: [serverport]/[application—name]/live

HLS stream : http://[serverip]: [serverport]/[application—name]/live. m3u8

Chapter 6 RTSP over HTTP

The key of RTSP over HTTP is to allow RTSP packets to communicate via HTTP port.

We know that the standard port of RTSP is 554, but due to various security policy
configurations such as firewalls, there may be restrictions when the client accesses
port 554, which prevents the normal transmission of RTSP packets

But the HTTP port (port 80) is generally open, so there is the idea of letting
RTSP packets pass through port 80, namely RTSP over HTTP

The details of RTSP over HITP are as follows:

First, the client opens two socket connect to the rtsp server HTTP ports. We
call these two sockets “data socket” and “command socket”.

Step 1. The client sends an HTTP GET command through the “data socket” to request
an RTSP connection.

Step 2. The server responds to the HTTP GET command through the “data socket”
and responds with success/failure.

Step 3. The client creates a “command socket” and sends an HTTP POST command
through the “command socket” to establish an RTSP session.

At this point, the auxiliary function of HTTP is completed, and the server does
not return the client’ s HTTP POST command. Next is the standard process of RTSP on
the HTTP port, but it needs to be completed through two sockets. The “command socket”
is only responsible for sending, and the “data socket” is only responsible for
receiving.

Step 4. The client sends RTSP commands (BASE64 encoding) through the ”command
socket”.

Step 5. The server responds to the RTSP command (in plain text) through the “data
socket”.

Step 6. Repeat Step4-Stepb until the client sends the RTSP PLAY command and the
server responds to the RTSP PLAY command

Step 7. The server transmits audio and video data to the client through the “data
socket”

After the data exchange is complete..

Step 8. The client sends the RTSP TEARDOWN command (BASE64 encoding and) through
the “command socket”

Step 9. The server responds to the RTSP TEARDOWN command (in plain text) through

the “data socket”
Step 10. Close the two sockets

VLC supports RTSP over HTTP, the settings as the follows:
2 Advanced Preferences - o X

- RTP/RTSP/SDP demuxer (using Live555)

[only show current

v *Tf Input / Codecs “| [use RIP over RTSP (TCP)
> Access modules Client port -1 5
» Audio codecs [Force multicast RTP via RTSP
v Demuxers [A Tunnel RTSP and RIP over HTTP
. HITP tunnel port 8080 | %
GEERED 1 Basenna RTSP dialect
Audio ES [WMserver RTSP dialect
AVl Usernane
Dirac Password
Dump RISP frame huffer size 250000 | %
DV
H264
Image
Matroska
MIPEG
MOD
MP4
MPEG-TS
Playlist
PS
Raw Audio
Raw Video
RTP
RTP/RTSP ~|

Show settings

O Simple @ A1l |Reset Preferences Cancel
Happytime rtsp client
(http://happytimesoft. com/products/rtsp—client/index. html)

over HTTP, The setting as the following:

HTTP port

Cancel

supports RTSP

Happytime rtsp client also supports rtsp streams starting with http:// or

https://.

If it starts with http://, it is considered to be a rtsp over http stream.

If it starts with https://, it is considered to be a rtsp over https stream.

Chapter 7 RTSP over Websocket

First establish an HTTP connection, and then upgrade to the websocket protocol,
RTSP over websocket protocol upgrade process:

C—>8:

GET /websocket HTTP/1.1 Host: 192.168.3.27

Upgrade: websocket Connection: Upgrade

Sec-WebSocket-Key: KSO+hOFs1q5SkEnx8bvp6w== Origin: http://192.168.3.27

Sec-WebSocket-Protocol: rtsp.onvif.org Sec-WebSocket-Version: 13

S—>C:

HTTP/1.1 101 Switching Protocols Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: G/cEt4HtsYEnPOMnSVkKRk459gM= Sec-WebSocket-Protocol:
rtsp.onvif.org

Sec-WebSocket-Version: 13

After the protocol upgrade is successful, performnormal rtsp protocol exchange,
and send and receive data through websocket connection.

Happytime rtsp client

(http://happytimesoft. com/products/rtsp—client/index. html) supports RTSP

over Websocket, The setting as the following:
System Settings

Language English v Take effect after restart
Log Level DEBUG

B Prefer to use RTP over UDP

HTTP port [s0[El

Websocket port I 80 B

/RispClient/x64/Debug/snapshot = W e
g Path | Di/happytimesoft/RispClient/x64/Debug/record -,

ding t

Confirm Cancel

Happytime rtsp client also supports rtsp streams starting with ws://.

If it starts with ws://, it is considered to be a rtsp over websocket stream.

Chapter 8 RTP Multicast

To enable the rtp multicast function, it need to specify the <multicast> to 1
in the configuration file

The rtsp server does not support the configuration of multicast addresses

Different rtsp stream addresses use multicast, randomly assigned multicast
addresses starting with 232.

Different rtsp sessions use rtp multicast to play the same rtsp stream, using
the same multicast address.Only the first rtsp session sends audio and video data,
and subsequent sessions refer to the first rtsp session.

The rtp multicast stream address is the same as the other rtsp stream address

Use VLC to test rtp multicast, use the following settings:

= Advanced Preferences — a X

RTP/RTSP/SDP demuxer (using Live555)

[J oaly show current

~ Demuxers [J Use RIP over RTSP (TCP)

Adaptive Client port -lis

Audio ES I [A Force multicast RIP via RTSP

EI Tunnel RTSP and RTP over HTTP
AV]

HITP tunnel port 8080 | ¥
Dirac

[kasenna RTSP dialect

EXLIp [WiServer RTSP dialect

DV Usernane

H264 Password

Image RTSP frame buffer size 230000 | ¥
Matroska

MIPEG

MOD

MP4

MPEG-TS

Playlist

PS

Raw Audio
Raw Video
RTP
RTP/RTSP
Subtitles

Show settings
O simple @ ALl | Reset Preferences Save Cancel

Chapter 9 Audio back channel

The backchannel connection handling is done using RTSP [RFC 2326]. Therefore
a mechanism is introduced which indicates that a client wants to built up a
backchannel connection. RTSP provides feature—tags to deal with such functionality
additions. A device that supports bi—directional connections (e. g audio or metadata

connections) shall support the introduced RTSP extensions.

9.1 RTSP Require- Tag

The RTSP standard [RFC 2326] can be extended by using additional headers objects.
For that purpose a Require tag is introduced to handle special functionality
additions (see [RFC 2326], 1.5 Extending Rtsp and 12.32 Require).

The Require—tag is used to determine the support of this feature. This header
shall be included in any request where the server is required to understand that
feature to correctly perform the request

A device that supports backchannel and signals Audio output support via the
AudioOutputs capability shall understand the backchannel tag:

www. onvif. org/ver20/backchannel

An RTSP client that wants to built up an RTSP connection with a data backchannel

shall include the Require header in its requests

9. 2 Connection setup for a bi- directional connection

A client shall include the feature tag in it’ s DESCRIBE request to indicate that
a bidirectional data connection shall be established.
A server that understands this Require tag shall include an additional media stream
in its SDP file as configured in its Media Profile.
An RTSP server that does not understand the backchannel feature tag or does not
support bidirectional data connections shall respond with an error code 551 Option
not supported according to the RTSP standard. The client can then try to establish
an RTSP connection without backchannel.
A SDP file is used to describe the session. To indicated the direction of the media
data the server shall include the a=sendonly in each media section representing media
being sent from the client to the server and a=recvonly attributes in each media
section representing media being sent from the server to the client

The server shall list all supported decoding codecs as own media section and

the client chooses which one is used. The payload type and the encoded bitstream
shall be matched with one of the a=rtpmap fields provided by the server so that the

server can properly determine the audio decoder.

Example 1: Server without backchannel support:

Client - Serwver: DESCRIBE rtep://192.168.0.1 RISPE/1.0
Coeq: 1
User-Agent: ONVIF Rtsp client
Accept: application/sdp
Require: www.onvif.org/verz(0/backchannel

Server - Client: RISP/1.0 551 Oprtion not supported
Ceeq: 1
Unsupported: www.onvif.org/ver20/backchannel

Example 2: Server with Onvif backchannel support:

Client = Server: DESCRIBE rtep://192.1668.0.1 RISE/1.0
Coeqg: 1
User-Agent: CNVIF Rtsp client
Accept: applicaticon/sdp
Require: www.onvif.org/verZ0/backchannel

Server - Client: RISP/1.0 200 OK
Czeq: 1
Content-Type: applicaticn/sdp
Content-Length: xxx

=0

o= 28906842807 IN IP4 182.168.0.1
g=RTSF Session with audicbackchannel
m=vides 0 RTB/AVP 26
a=gontrol:rtep://192.168.0.1/video
a=recvonly

m=audio 0 RIE/AVE O
a=gcontrol:rtap://192.168.0.1/audic
a=recvonly

m=audio 0 RTE/AVE 0
a=control:rtsp://192.165.0.1/audickback
a=rtpmap:0 PCMU/B000

a=sendonly

This SDP file completely describes the RTSP session. The Server gives the client
its control URLs to setup the streams.

In the next step the client can setup the sessions:

Client - Server: SETUP rtsp://192.168.0.1/video RISP/1.0
Caeq: 2
Transport: RIF/AVFE;unicast;client port=4588-4589

Server - Client: RISPF/1.0 200 OK
Caeq: 2
Session: 123124 timeocut=E60
Transport:RTB/AVE;unicast;client_port=4588-4589;
server_port=6256-6257

Client - Server: SETUP rtsp://19%2.1€8.0.1/audio RISP/1.0
Ceeq: 3
Sesaion: 123124
Transport: RIB/AVFE;unicast;client_port=45768-4579

Server - Client: RISE/1.0 200 QK
Coeq: 3
Session: 123124;timecut=E60
Transport:RIF/AVP;unicast;client_port=4578-4579;
gerver_port=6Z76-62Z77

Client - Server: SETUP rtap://192.168.0.1/audiocback RISF/1.0
Ceeq: 4
Session: 123124

Transport: RIP/AVP;unicast;client port=6296-6297
Regquire: www.onvif.org/verz(/backchannel

Server - Client: RISE/1.0 200 OK
Ceeq: 4
Session: 123124;timecut=6&0
Transport:RTE/AVE;unicast;client_port=6236-6237;
server port=2346-2347

The third setup request establishes the audio backchannel connection.

In the next step the client starts the session by sending a PLAY request.

Client - Server: PLAY rtep://192.168.0.1 RISE/1.0
Ceag: 5
Session: 123124
Require: wwWw.onvif.org/verzl/backchannel
Server - Client: RISP/1.0 200 CK
Ceeq: 5
Session: 123124:timeout=60
After receiving the OK response to the PLAY request the client MAY start sending
audio data to the server. It shall not start sending data to the server before it
has received the response
The Require—header indicates that a special interpretation of the PLAY command
is necessary. The command covers both starting of the video and audio stream from

NVT to the client and starting the audio connection from client to server.

To terminate the session the client sends a TEARDOWN request

Client — NVT: TEARDOWN rtsp:/f/192.1668.0.1 RTSP/1.0
Ceeq: 6
Segszion: 123124
Require: www.onvif.org/verZ0/backchannel

HVI - Client: RISP/1.0 200 OK
Cseg: &
Seggion: 123124

9.3 Example
Server with Onvif backchannel support (with multiple decoding capability)
If a device supports multiple audio decoders as backchannel, it can signal such

capability by listing multiple a=rtpmap fields illustrated as follows.

Client = Serwver: DESCRIBE rtsp://192.168.0.1 RISE/1.0
Caeq: 1
UOser-Agent: CONVIF Rtsp client
Accept: application/sdp
Require: www.onvif.org/veriZl/backchannel

Server - Client: RISP/1.0 200 OK
Ceeq: 1
Content-Iype: applicaticn/s=sdp
Content-Length: xxx

=0

o= 2890842807 IN IP4 192.168.0.1
g=RT5P Session with audiocbackchannel
m=video O RIE/AVFE 26
a=controli:rtsp://192.168.0.1/video
asrecvonly

m=audic O RIE/AVE 0
a=control:rtep://192.1638.0.1/audic
a=recvonly

m=audio O RIP/AVPE 0 97 98 99 100
a=control:rtep://192.168.0.1/audicback
a=rtprap:0d PCMU/E000

a=rtpmap:97 G726-16/8000

a=rtpmap: 98 G726-24/8000

a=rtpmap:99 G726-32/8000
asrtpmap:100 G726-40/8000

a=aendonly

Chapter 10 Run media server

The server is a console application.
Windows: to run the server, simply type “mediaserver”.
Linux: to run the server, type ”./start.sh”, on linux platform, media server

run as deamon by default

media server supports the following command line options:

-c config specify the configuration file

—c option specifies the configuration file,if not specified, the default
configuration mediaserver.cfg is used

-1 [device|videodevice|audiodevice|window]

-1 device list available video and audio capture device

-1 videodevice list available video capture device

-1 audiodevice list available audio capture device

-1 window list available application window

Below is sample output of -1 device:

mediaserver —I device

Available video capture device :

index : 0, name : FacelTime HD Camera (Built—in)

Available audio capture device :
index : 0, name : Headset Microphone (Apple Audio Device)

index : 1, name : Internal Digital Microphone (Apple Audio Device)

Note : The demo version has the following limitations:

Maximum support four concurrent sessions.

Chapter 11 Multiple capture devices support

If your system have multiple audio capture device, you can use
rtsp://[serverip]: [serverport]/[application—name]/audiodeviceN
rtmp://[serverip]: [serverport]/[application—name]/audiodeviceN
srt://[serverip]: [serverport] ?streamid=[application—name]/audiodeviceN
http://[serverip]: [serverport]/[application—name]/audiodeviceN

The N to specify the audio capture device index, start from 0, such as:

rtsp://192.168.0.100/myapp/audiodevice ; stream audio from the first audio device
rtsp.//192.168.0.100/myapp/audiodevicel | stream audio from the second audio device

If your system have multiple video capture device, you can use
rtsp://[serverip]: [serverport]/[application—name]/videodeviceN
rtmp://[serverip]: [serverport]/[application—name]/videodeviceN
srt://[serverip]: [serverport]?streamid=[application—name]/videodeviceN
http://[serverip]: [serverport]/[application—name]/videodeviceN

The N to specify the video capture device index, start from 0, such as:

rtsp://192.168.0.100/myapp/videodevice ; stream video from the first video device
rtsp://192.168.0.100/myapp/videodevicel ; stream video from the second video device

If your system have multiple monitors, you can use

rtsp://[serverip]: [serverport]/[application—name]/screenliveN
rtmp://[serverip]: [serverport]/[application—name]/screenliveN
srt://[serverip]: [serverport]?streamid=[application—name]/screenliveN
http://[serverip]: [serverport]/[application—name]/screenliveN

The N to specify the monitor index, start from 0, such as:

rtsp://192.168.0.100/myapp/screenlive ; stream living screen from the first monitor

rtsp://192.168.0.100/myapp/screenlivel s Stream living screen the second monitor

The audio index or video index represents which device can run mediaserver —I

device to view.

videodevice or audiodevice can also specify the device name, such as:

rtsp://[serverip]: [serverport]/[application—name]/videodevice=testvideo

Run the mediaserver —I device command to get the device name.

Note that there can be no spaces in the device name, if the device name contains

spaces, you need to use %20 instead of spaces

If the device name is “FaceTime HD Camera (Built—in)” , the rtsp stream address
is:
rtsp://[serverip]: [serverport]/[application—name]/videodevice=FaceTime%20HD

%20Camera%20 (Built—in)

Chapter 12 Capture application window

The media server supports capturing application windows, you can use the
following command to list valid application windows:

mediaserver —I window
Below is a sample output of the command
Available window name :

C:\Windows\system32\cmd. exe — MediaServer.exe -1 window
user manual.doc — WPS Office
Rtmp—server Project — Source Insight — [Main. cpp]

RtmpServer

You can use the following url to capture the specified application window:
rtsp://[serverip]: [serverport]/[application—name]/window=[window title]

Note : window title case insensitive

Such as :

rtsp://[serverip]: [serverport]/[application—name]/window=mediaserver

Note that there can be no spaces in the window title, if the window title contains
spaces, you need to use %20 instead of spaces. Such as:
rtsp://[serverip]: [serverport]/[application—name]/window=user%20manual. doc%

20-%20WPS%200ffice

Chapter 13 Support URL parameters

Media server supports URL parameters, with the following format:

Taking playing the test.mp4 file as an example:

rtsp://[serverip]: [serverport]/[application—name]/test. mp4?paraml=valuel&p

aram2=value2

Pararml and param?2 represent URL parameters, while valuel and value2 represent

the values of paraml and param2.

Note

: The parameter value specified through the URL has a higher priority than

the parameters configured in the configuration file.

The media server supports the following parameters:

Note : Unless otherwise specified, the parameters are valid for all streams.

srtp :

ve

Whether to enable SRTP, valid for rtsp stream.
Possible values
0 — disable srtp

1 — enable srtp

: Specify the transmission method, valid for rtsp stream.

Possible values:
unicast

multicast

Specify transmission protocol, valid for rtsp stream.
Possible values:
udp : rtp over udp

tcp @ rtp over tcp

: Specify video encoding

Possible values:
H264
H265
JPEG

MP4

fps : Specify video frame rate
w : Specify video width
h : Specify video height

vb : Specify video bitrate

ae : Specify audio encoding
Possible values:
PCMU : g711 ulaw
PCMA : g711 alaw
G726
G722
OPUS
AAC

sr : Specify audio samplerate
ch : Specify the number of audio channels

ab : Specify audio bitrate

Example:

Using unicast RTP over UDP mode, output video encoding as H264, resolution as
1920 * 1080, frame rate as 30, bit rate as 4000K, audio as AAC, sampling rate as
44100, stereo RTSP stream:

rtsp://[serverip]: [serverport]/[application—name]/test. mp4?t=unicast&p=udp

&ve=h264&w=1920&h=1080&fps=30&vb=4000&ae=aac&sr=44100&ch=2

Chapter 14 Support SRTP

Happytiem media server supports Secure Real—-time Transport Protocol (secure RTP
or SRTP) for rtsp publishing and playback. The encryption keys can be passed in the

SDP data. The open—source tools FFmpeg and FFplay can be used for SRTP testing

14.1 SRTP for rtsp publishing

Happytime RTSP Pusher supports SRTP publishing. Modify the RTSP Pusher
configuration file to set <SRTP> under the <Pusher> tag to 1, and RTSP Pusher will
use SRTP for data publishing:

RTSP Pusher uses SRTP to publish configuration examples:

<{pusher>

{src>test. mpd</src>

{transfer>
<mode>RTSP</mode>
{rtspurl>rtsp://192. 168. 3. 36/myapp/live</rtspurl>
{user>admin</user>
{pass>admin</pass>

{/transfer>

<{video>

{/video>

<audio>

{/audio>

<metadata>0<{/metadata>

<{srtp>1</srtp>

<{/pusher>

You will see SDP information in the ANNOUNCE request message of rsp pusher. It

should look something like this:

v=0

o=— 0 0 IN IP4 192.168. 3. 36
c=IN IP4 192. 168. 3. 36
s=session

t=0 0

a=control :

m=video 0 RTP/SAVP 96

a=rtpmap:96 H264/90000

a=fmtp:96
packetization—mode=1;profile-level-1d=42801F; sprop—parameter—sets=Z0KAH5ZSAKALdJQEBAUAAAMAAQ
AAAwAyhA==, aMuNSA==

a=control:realvideo

a=crypto:1 AES_CM_128 HMAC SHA1 80 inline:KSO+hOFs1q5SkEnx8bvp670m2zyHDD6ZJF4NHAa3

m=audio 0 RTP/SAVP 97

a=rtpmap:97 MPEG4-GENERIC/44100/2

a=fmtp:97
streamtype=b5;profile-level—-id=1;mode=AAC-hbr;sizelength=13;indexlength=3;indexdeltalength=3;
config=121056E500

a=control:realaudio

a=crypto:1 AES CM 128 HMAC SHA1 80 inline:R96zEk31Q7uLph8DWn0JOCUfXdTL/Jb1RTsTDYKK

14.2 SRTP for rtsp playback

The media server supports the URL parameter SRTP to specify whether rtsp SRTP
playback is enabled or not

Example:

Enable SRTP to play test.mp4 files:

rtsp://[serverip]: [serverport]/[application—name]/test. mp4?srtp=1

Use FFplay or Happytime rtsp client to test playback.

	Table of Contents
	Chapter 1 Introduction
	Chapter 2 Key features
	Chapter 3 Function chart
	Chapter 4 Configuration
	4.1 Configuration Templates
	4.2 Configuring Node Description
	4.2.1 System parameters
	4.2.2 HTTP node
	4.2.3 HTTPS node
	4.2.4 RTSP node
	4.2.5 RTMP node
	4.2.6 SRT node
	4.2.7 HTTP-FLV node
	4.2.8 HLS node
	4.2.9 User node
	4.2.10 Application node
	4.2.10.1 Output node
	4.2.10.2 Proxy node
	4.2.10.3 Pusher node

	4.2.11 Backchannel node

	Chapter 5 Data pusher
	Chapter 6 RTSP over HTTP
	Chapter 7 RTSP over Websocket
	Chapter 8 RTP Multicast
	Chapter 9 Audio back channel
	9.1 RTSP Require- Tag
	9.2 Connection setup for a bi- directional connection
	9.3 Example

	Chapter 10 Run media server
	Chapter 11 Multiple capture devices support
	Chapter 12 Capture application window
	Chapter 13 Support URL parameters
	Chapter 14 Support SRTP
	14.1 SRTP for rtsp publishing
	14.2 SRTP for rtsp playback

